Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443717

RESUMO

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas , Ácido Homogentísico/metabolismo , Estudos Prospectivos
2.
Antibiotics (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37370302

RESUMO

Antimicrobial resistance is a global issue, and the investigation of alternative therapies that are not traditional antibiotics are warranted. Novel bacterial type II topoisomerase inhibitors (NBTIs) have recently emerged as a novel class of antibiotics with reduced potential for cross-resistance to fluoroquinolones due to their novel mechanism of action. This study investigated the in vitro activity of a series of cyclohexyl-oxazolidinone bacterial topoisomerase inhibitors against type strains of Francisella tularensis and Burkholderia pseudomallei. Broth microdilution, time-kill, and cell infection assays were performed to determine activity against these biothreat pathogens. Two candidates were identified that demonstrated in vitro activity in multiple assays that in some instances was equivalent to ciprofloxacin and doxycycline. These data warrant the further evaluation of these novel NBTIs and future iterations in vitro and in vivo.

3.
Bioorg Med Chem Lett ; 90: 129331, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187252

RESUMO

The post-transcriptional modifier tRNA-(N1G37) methyltransferase (TrmD) has been proposed to be essential for growth in many Gram-negative and Gram-positive pathogens, however previously reported inhibitors show only weak antibacterial activity. In this work, optimisation of fragment hits resulted in compounds with low nanomolar TrmD inhibition incorporating features designed to enhance bacterial permeability and covering a range of physicochemical space. The resulting lack of significant antibacterial activity suggests that whilst TrmD is highly ligandable, its essentiality and druggability are called into question.


Assuntos
Metiltransferases , tRNA Metiltransferases , tRNA Metiltransferases/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química
4.
Bioorg Med Chem Lett ; 65: 128648, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231579

RESUMO

There is an increasingly urgent and unmet medical need for novel antibiotic drugs that tackle infections caused by multidrug-resistant (MDR) pathogens. Novel bacterial type II topoisomerase inhibitors (NBTIs) are of high interest due to limited cross-resistance with fluoroquinolones, however analogues with Gram-negative activity often suffer from hERG channel inhibition. A novel series of bicyclic-oxazolidinone inhibitors of bacterial type II topoisomerase were identified which display potent broad-spectrum anti-bacterial activity, including against MDR strains, along with an encouraging in vitro safety profile. In vivo proof of concept was achieved in a A. baumannii mouse thigh infection model.


Assuntos
Oxazolidinonas , Inibidores da Topoisomerase , Animais , Antibacterianos/farmacologia , DNA Girase/metabolismo , Fluoroquinolonas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/farmacologia
5.
J Antimicrob Chemother ; 76(2): 460-466, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33152764

RESUMO

BACKGROUND: The dissemination of MBLs compromises effective use of many ß-lactams in the treatment of patients with life-threatening bacterial infections. Predicted global increases in the prevalence of MBL-producing carbapenem-resistant Enterobacterales (CRE) are being realized, yielding infections that are untreatable with existing therapies including newly approved ß-lactam/ß-lactamase inhibitor combinations. Developing MBL inhibitors (MBLIs) now is essential to address the growing threat that MBL-producing CRE pose to patients. METHODS: A novel MBLI series was assessed by susceptibility testing and time-kill assays. Target activity and selectivity was evaluated using bacterial NDM, VIM and IMP enzyme assays and human matrix metallopeptidase enzyme assays, respectively, and cytotoxicity was assessed in HepG2 cells. In vivo efficacy of meropenem/MBLI combinations was evaluated in a mouse thigh infection model using an NDM-1-producing Escherichia coli strain. RESULTS: Combination of MBLIs with carbapenems reduced MICs for NDM/IMP/VIM-producing Enterobacterales by up to 128-fold compared with the carbapenems alone. Supplementation of meropenem with the promising compound 272 reduced the MIC90 from 128 to 0.25 mg/L in a panel of MBL-producing CRE clinical isolates (n = 115). Compound 272 restored the bactericidal activity of meropenem and was non-cytotoxic, potentiating the antimicrobial action of meropenem through specific inhibition of NDM, IMP and VIM. In vivo efficacy was achieved in a mouse thigh infection model with meropenem/272 dosed subcutaneously. CONCLUSIONS: We have developed a series of rationally designed MBLIs that restore activity of carbapenems against NDM/IMP/VIM-producing Enterobacterales. This series warrants further development towards a novel combination therapy that combats antibiotic-resistant organisms, which pose a critical threat to human health.


Assuntos
Carbapenêmicos , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
6.
Genome Biol ; 19(1): 94, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021593

RESUMO

BACKGROUND: Fitness costs imposed on bacteria by antibiotic resistance mechanisms are believed to hamper their dissemination. The scale of these costs is highly variable. Some, including resistance of Staphylococcus aureus to the clinically important antibiotic mupirocin, have been reported as being cost-free, which suggests that there are few barriers preventing their global spread. However, this is not supported by surveillance data in healthy communities, which indicate that this resistance mechanism is relatively unsuccessful. RESULTS: Epistasis analysis on two collections of MRSA provides an explanation for this discord, where the mupirocin resistance-conferring mutation of the ileS gene appears to affect the levels of toxins produced by S. aureus when combined with specific polymorphisms at other loci. Proteomic analysis demonstrates that the activity of the secretory apparatus of the PSM family of toxins is affected by mupirocin resistance. As an energetically costly activity, this reduction in toxicity masks the fitness costs associated with this resistance mutation, a cost that becomes apparent when toxin production becomes necessary. This hidden fitness cost provides a likely explanation for why this mupirocin-resistance mechanism is not more prevalent, given the widespread use of this antibiotic. CONCLUSIONS: With dwindling pools of antibiotics available for use, information on the fitness consequences of the acquisition of resistance may need to be considered when designing antibiotic prescribing policies. However, this study suggests there are levels of depth that we do not understand, and that holistic, surveillance and functional genomics approaches are required to gain this crucial information.


Assuntos
Antibacterianos/farmacologia , Epistasia Genética , Aptidão Genética/efeitos dos fármacos , Genoma Bacteriano , Isoleucina-tRNA Ligase/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana , Evolução Molecular , Loci Gênicos , Isoleucina-tRNA Ligase/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Proteômica/métodos
7.
J Antimicrob Chemother ; 72(11): 3043-3046, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981647

RESUMO

OBJECTIVES: To assess the prevalence of cryptic silver (Ag+) resistance amongst clinical isolates of Gram-negative bacteria, and to examine how overt Ag+ resistance becomes activated in such strains. METHODS: Established methods were used to determine the susceptibility of 444 recent clinical isolates to Ag+, and to evaluate the potential for overt Ag+ resistance to emerge in susceptible isolates by spontaneous mutation. The genetic basis for Ag+ resistance was investigated using PCR amplification and DNA sequencing. RESULTS: None of the isolates tested displayed overt Ag+ resistance. However, upon silver challenge, high-level Ag+ resistance (silver nitrate MIC >128 mg/L) was selected at high frequency (10-7 to 10-8) in 76% of isolates of Enterobacter spp., ∼58% of isolates of Klebsiella spp. and ∼0.7% of isolates of Escherichia coli. All strains in which Ag+ resistance could be selected harboured the sil operon, with resistance apparently resulting from activation of this system as a consequence of single missense mutations in silS. By contrast, Ag+ resistance was not selected in isolates lacking sil, which included all tested representatives of Pseudomonas aeruginosa, Acinetobacter spp., Citrobacter spp. and Proteus spp. CONCLUSIONS: Whilst overt Ag+ resistance in Gram-negative pathogens is uncommon, cryptic Ag+ resistance pertaining to the sil operon is prevalent and readily activated in particular genera (Enterobacter and Klebsiella).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Nitrato de Prata/farmacologia , Prata/farmacologia , Enterobacter/efeitos dos fármacos , Escherichia coli/genética , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Klebsiella/efeitos dos fármacos , Mutação de Sentido Incorreto/efeitos dos fármacos , Óperon , Prevalência
8.
Artigo em Inglês | MEDLINE | ID: mdl-28223393

RESUMO

The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC90 values were 4 and 8 µg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli, respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10-8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC50], >100 µM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
10.
J Antimicrob Chemother ; 71(10): 2831-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27353465

RESUMO

OBJECTIVES: To evaluate the in vitro biological properties of a novel class of isothiazolone inhibitors of the bacterial type II topoisomerases. METHODS: Inhibition of DNA gyrase and topoisomerase IV activity was assessed using DNA supercoiling and decatenation assays. MIC and MBC were determined according to CLSI guidelines. Antibacterial combinations were assessed using a two-dimensional chequerboard MIC method. Spontaneous frequency of resistance was measured at various multiples of the MIC. Resistant mutants were generated by serial passage at subinhibitory concentrations of antibacterials and genetic mutations were determined through whole genome sequencing. Mammalian cytotoxicity was evaluated using the HepG2 cell line. RESULTS: Representative isothiazolone compound REDX04957 and its enantiomers (REDX05967 and REDX05990) showed broad-spectrum bactericidal activity against the ESKAPE organisms, with the exception of Enterococcus spp., as well as against a variety of other human bacterial pathogens. Compounds retained activity against quinolone-resistant strains harbouring GyrA S83L and D87G mutations (MIC ≤4 mg/L). Compounds inhibited the supercoiling activity of wild-type DNA gyrase and the decatenation function of topoisomerase IV. Frequency of resistance of REDX04957 at 4× MIC was <9.1 × 10(-9). Against a panel of recent MDR isolates, REDX05967 demonstrated activity against Acinetobacter baumannii with MIC50 and MIC90 of 16 and 64 mg/L, respectively. Compounds showed a lack of cytotoxicity against HepG2 cells at 128 mg/L. CONCLUSIONS: Isothiazolone compounds show potent activity against Gram-positive and -negative pathogens with a dual targeting mechanism-of-action and a low potential for resistance development, meriting their continued investigation as broad-spectrum antibacterial agents.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Tiazóis/farmacologia , Inibidores da Topoisomerase II/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Técnicas de Tipagem Bacteriana , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Bacteriano/metabolismo , Enterococcus/efeitos dos fármacos , Enterococcus/enzimologia , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mutação , Tiazóis/química , Tiazóis/isolamento & purificação , Tiazóis/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/isolamento & purificação
11.
Antimicrob Agents Chemother ; 55(4): 1784-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282422

RESUMO

We further examined the usefulness of previously reported Bacillus subtilis biosensors for antibacterial mode-of-action studies. The biosensors could not detect the tRNA synthetase inhibitors mupirocin, indolmycin, and borrelidin, some inhibitors of peptidoglycan synthesis, and most membrane-damaging agents. However, the biosensors confirmed the modes of action of several RNA polymerase inhibitors and DNA intercalators and provided new insights into the possible modes of action of ciprofloxacin, anhydrotetracycline, corralopyronin, 8-hydroxyquinoline, and juglone.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Técnicas Biossensoriais , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Ciprofloxacina/farmacologia , Inibidores Enzimáticos/farmacologia , Álcoois Graxos/farmacologia , Indóis/farmacologia , Mupirocina/farmacologia , Naftoquinonas/farmacologia , Oxiquinolina/farmacologia , Tetraciclinas/farmacologia
12.
J Antimicrob Chemother ; 65(1): 72-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889790

RESUMO

OBJECTIVES: Slow-growing and non-dividing bacteria exhibit tolerance to many antibiotics. However, membrane-active agents may act against bacteria in all growth phases. We sought to examine whether the novel porphyrin antibacterial agents XF-70 and XF-73, which have rapid membrane-perturbing activity against Staphylococcus aureus, retained antistaphylococcal activity against growth-attenuated cells. METHODS: The killing kinetics of XF-70, XF-73 and various comparator agents against exponential phase cultures of S. aureus SH1000 were compared with effects on cells held at 4 degrees C, non-growing cultures expressing the stringent response induced by mupirocin and bacteria in the stationary phase. Biofilms of S. aureus SH1000 were generated with the Calgary device to examine the activities of XF-70 and XF-73 under a further system exhibiting diminished bacterial growth. RESULTS: Cold culture, stringent response and stationary phase cultures remained susceptible to XF-70 and XF-73, which caused > or =5 log reductions in viability over 2 h. During this period the most active comparator agents (chlorhexidine and cetyltrimethylammonium bromide) only promoted a 3 log drop in viability. XF-70 and XF-73 were also highly active against biofilms, with both agents exhibiting low biofilm MICs (1 mg/L) and minimum biofilm eradication concentrations (2 mg/L). CONCLUSIONS: XF-70 and XF-73 remained highly active against various forms of slow-growing or non-dividing S. aureus. The results support the hypothesis that membrane-active agents may be particularly effective in eradicating slow- or non-growing bacteria and suggest that XF-70 and XF-73 could be utilized to treat staphylococcal infections where the organisms are only dividing slowly, such as biofilm-associated infections of prosthetic devices.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Porfirinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Temperatura Baixa , Contagem de Colônia Microbiana , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Químicos , Estrutura Molecular
13.
J Antimicrob Chemother ; 64(4): 735-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19689976

RESUMO

OBJECTIVES: XF-73 is a novel porphyrin antibacterial agent previously reported to inhibit a range of gram-positive bacterial species, including Staphylococcus aureus. Its mode of action is unknown. Using S. aureus as a model organism we sought to examine the basis of its antibacterial activity. METHODS: The effects of XF-73 on the growth and survival of S. aureus SH1000 were investigated by viable count and culture absorbance techniques. Inhibition of macromolecular synthesis and disruption of membrane integrity after exposure to XF-73 were examined by radiolabelling experiments, the BacLight fluorescent dye assay and measurement of K(+) and ATP leakage from the cell. The effect of XF-73 on a staphylococcal coupled transcription-translation system was also investigated. RESULTS: XF-73 was rapidly bactericidal against S. aureus SH1000 and demonstrated more rapid killing kinetics than all other comparator agents when tested at an equivalent multiple (4x) of the MIC. Exposure of S. aureus to XF-73 for 10 min completely inhibited DNA, RNA and protein synthesis. XF-73 had no effect on transcription and translation in vitro. Cells exposed to XF-73 gave a positive response in the BacLight assay, which detects membrane damage. The drug also caused substantial loss of K(+) and ATP from the cell, but did not promote bacterial lysis. CONCLUSIONS: XF-73 exhibited rapid membrane-perturbing activity, which is likely to be responsible for inhibition of macromolecular synthesis and the death of staphylococci exposed to the drug.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Porfirinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Trifosfato de Adenosina/análise , Proteínas de Bactérias/biossíntese , Biomassa , Contagem de Colônia Microbiana , Citosol/química , DNA Bacteriano/biossíntese , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Potássio/análise , Biossíntese de Proteínas/efeitos dos fármacos , RNA Bacteriano/biossíntese , Radioisótopos/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...